Shack-Hartmann wavefront sensing with elongated sodium laser beacons: centroiding versus matched filtering.

نویسندگان

  • Luc Gilles
  • Brent Ellerbroek
چکیده

We describe modeling and simulation results for the Thirty Meter Telescope on the degradation of sodium laser guide star Shack-Hartmann wavefront sensor measurement accuracy that will occur due to the spatial structure and temporal variations of the mesospheric sodium layer. By using a contiguous set of lidar measurements of the sodium profile, the performance of a standard centroid and of a more refined noise-optimal matched filter spot position estimation algorithm is analyzed and compared for a nominal mean signal level equal to 1000 photodetected electrons per subaperture per integration time, as a function of subaperture to laser launch telescope distance and CCD pixel readout noise. Both algorithms are compared in terms of their rms spot position estimation error due to noise, their associated wavefront error when implemented on the Thirty Meter Telescope facility adaptive optics system, their linear dynamic range, and their bias when detuned from the current sodium profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing.

We recently introduced matched filtering in the context of astronomical Shack-Hartmann wavefront sensing with elongated sodium laser beacons [Appl. Opt. 45, 6568 (2006)]. Detailed wave optics Monte Carlo simulations implementing this technique for the Thirty Meter Telescope dual conjugate adaptive optics system have, however, revealed frequent bursts of degraded closed loop residual wavefront e...

متن کامل

Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.

Laboratory experiments are carried out to detect optical vortices in conditions typical of those experienced when a laser beam is propagated through the atmosphere. A Spatial Light Modulator (SLM) is used to mimic atmospheric turbulence and a Shack-Hartmann wavefront sensor is utilised to measure the slopes of the wavefront surface. A matched filter algorithm determines the positions of the Sha...

متن کامل

First Tests of Wavefront Sensing with a Constellation of Laser Guide Beacons

Adaptive optics to correct current telescopes over wide fields, or even to correct future very large telescopes over narrow fields, will require real-time wavefront measurements made with a constellation of laser beacons. Here we report the first such measurements, made at the 6.5 mMMTwith five Rayleigh beacons in a 20 pentagon. Each beacon is made with a pulsed beam at 532 nm of 4 W at the exi...

متن کامل

First tests of wavefront sensing with a constellation of laser guide

Adaptive optics to correct current telescopes over wide fields, or future very large telescopes over even narrow fields, will require real-time wavefront measurements made with a constellation of laser beacons. Here we report the first such measurements, made at the 6.5 m MMT with five Rayleigh beacons in a 2 ′ pentagon. Each beacon is made with a pulsed beam at 532 nm, of 4 W at the exit pupil...

متن کامل

Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye.

Most Shack-Hartmann based aberrometers use infrared light, for the comfort of the patients. A large amount of the light that is scattered from the retinal layers is recorded by the detector as background, from which it is not trivial to estimate the centroid of the Shack-Hartmann spot. For a centroiding algorithm, background light can lead to a systematic bias of the centroid positions towards ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 45 25  شماره 

صفحات  -

تاریخ انتشار 2006